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Abstract
We propose a quantization of linear, volume preserving, maps on the discrete
and finite 3-torus T

3
N represented by elements of the group SL(3, ZN).

These flows can be considered as special motions of the Nambu dynamics
(linear Nambu flows) in the three-dimensional toroidal phase space and are
characterized by invariant vectors a of T

3
N . We quantize all such flows, which

are necessarily restricted on a planar two-dimensional phase space, embedded
in the 3-torus, transverse to the vector a. The corresponding maps belong to the
little group of a ∈ SL(3, ZN), which is an SL(2, ZN) subgroup. The associated
linear Nambu maps are generated by a pair of linear and quadratic Hamiltonians
(Clebsch–Monge potentials of the flow) and the corresponding quantum maps
realize the metaplectic representation of SL(3, ZN) on the discrete group of
three-dimensional magnetic translations, i.e. the non-commutative 3-torus with
a deformation parameter the Nth root of unity. Other potential applications
of our construction are related to the quantization of deterministic chaos in
turbulent maps as well as to quantum tomography of three-dimensional objects.

PACS numbers: 03.65.Fd, 02.40.−k

1. Introduction

Recently, due to the progress in understanding the dynamics of the low-energy effective field
theories for systems of multiple membranes, in analogy with the AdS/CFT correspondence
[1], new algebraic structures, the metric 3-algebras, which are related to the quantization
problem of Nambu 3-brackets [2–7], have attracted considerable interest [8–13].

1751-8113/09/275201+12$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/27/275201
mailto:axenides@inp.demokritos.gr
mailto:mflorato@physics.uoa.gr
mailto:Stam.Nicolis@lmpt.univ-tours.fr
http://stacks.iop.org/JPhysA/42/275201


J. Phys. A: Math. Theor. 42 (2009) 275201 M Axenides et al

In [13], we discussed in detail the relation between metric 3-algebras and Nambu
3-brackets, and we proposed a specific quantization method inspired by the work of Takhtajan
[3].

In his classic paper [2], Nambu introduced a generalization of classical mechanics, where
the role of canonical transformations of Hamiltonian mechanics is played by the general
volume-preserving diffeomorphism group of a manifold of any dimension, considered as the
corresponding phase space. For example, in three-dimensional Euclidean space, we consider
incompressible flows and the particle trajectory flow equations are the Nambu dynamical
equations: first order in time differential equations that generalize Hamilton’s equations of
motion.

In the following section, we recall that, in this case, there are two Hamiltonians H1,H2,
corresponding to the Clebsch–Monge potentials of the flow, which are conserved and their
constant values define a double family of intersecting surfaces, the intersections of which
define the trajectories of the (test) particles carried by the flow. The interpretation we adopted
in [13] is that the surfaces defined by the second potential are conventional, two-dimensional,
phase spaces, foliating the 3-space, and the first potential defines conventional Hamiltonian
mechanics on these phase spaces. There is a common, induced, Poisson bracket on the
two-dimensional phase spaces embedded in R

3, and the Nambu equations on these phase
spaces take the standard Hamiltonian form.

The quantum mechanics of this system must follow the quantization of the induced
Poisson structure, which depends on the symplectic structure on the H2 surfaces. If the H2

Hamiltonian is linear and H1 is quadratic, we have an incompressible linear flow in R
3.

In the present work, we consider the classical discretization of these linear flows(maps)
in toroidal discrete three-dimensional phase space and their quantization. The corresponding
quantum three-dimensional phase space is a non-commutative 3-torus with rational values of
the non-commutativity parameter [21]. The classical linear maps of SL(3, ZN) are related to
strong arithmetic (deterministic) chaos [22] and can be considered as discrete toy models for
turbulence on T

3 [23]. These considerations and the possible physical interpretation of their
quantized version will be discussed elsewhere.

The plan of the paper is as follows.
In section 2 we recall the formulation of Nambu dynamics in R

3 and T
3; in section 3 we

consider the deterministic, chaotic, linear maps, analogs of the Arnold cat maps (but in three
dimensions), which are elements of SL(3, R) and introduce their Lie algebra. In section 4, we
pass to the discretized 3-torus and consider corresponding maps, which are the elements of
SL(3, ZN) and, indeed, belong to the little group, SL(2, ZN), of the invariant vectors normal
to the planes of the flow. In section 5, we consider the non-commutative, rational, 3-torus and
we construct the Heisenberg–Weyl group that corresponds to the linear Nambu flows as well
as the associative, quantum, 3-algebra for the foliation of the 3-torus by the normal vectors.

In section 6, we present the quantization of these maps. The quantum maps (realized by
unitary N×N matrices) are constructed explicitly by imposing the (metaplectic) representation
of SL(3, ZN), induced by the little group SL(2, ZN).

We end with our conclusions, interpretation of our results and discuss some emergent
applications.

2. Nambu mechanics in R
3 and T

3

In his classic paper [2], Y Nambu generalized classical Hamilton–Poisson mechanics by
considering arbitrary dimensions for the phase space, replacing the canonical transformation
symmetry by the volume-preserving diffeomorphisms [8]. In the particular case of
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three-dimensional, flat, phase space, one needs two ‘Hamiltonian’ functions, and the Nambu
equations of motion take the form

dxi

dt
= {xi,H1,H2}, (1)

i = 1, 2, 3, with initial conditions xi(t = 0) ≡ xi(0).
The 3-bracket for functions, f, g, h ∈ C ∞(R3) is defined as

{f, g, h} ≡ εijk∂if ∂jg∂kh. (2)

The Nambu bracket is invariant under general coordinate transformations, which preserve the
volume, i.e. for yi = ui(x) with J = det ∂ui/∂xj = 1. These transformations form the
volume-preserving diffeomorphism group, SDiff(R3), under the composition of mappings
[14]. For infinitesimal transformations

xi → xi + vi(x), (3)

with vi(x) being a divergenceless vector field. This transformation defines the flow

dx

dt
= v(x), (4)

with corresponding generators, X(v) ≡ −vi∂i . They form the Lie algebra,

[X(v),X(u)] = X(w), (5)

where

wi ≡ εijk∂j ((v × u)k).

The right-hand side of equation (4) can be written in terms of two Clebsch–Monge potentials
[15], H1 and H2:

vi = εijk∂jH1∂
kH2. (6)

The Lie algebra of SDiff(R3), in the Clebsch–Monge gauge, becomes

[X(H1,H2),X(H3,H4)] = X(X(H1,H2)H3,H4) + X(H3, X(H1,H2)H4). (7)

Note that X(H1,H2)H3 = −{H1,H2,H3}, i.e. they realize the Nambu bracket.
From the above we see that the Nambu equations of motion describe incompressible flows

in R
3 and the solutions represent the integral curves of the flow vi(H1,H2).
The 3-bracket has certain interesting properties [3]: It

• is multilinear in f, g, h,
• is antisymmetric in f, g, h,
• has the Leibniz property:

{f1f2, g, h} = f1{f2, g, h} + {f1, g, h}f2, (8)

• satisfies the fundamental identity,

{{f1, f2, f3}, f4, f5} + {f1, {f4, f2, f3}, f5} + {f1, f4, {f5, f2, f3}}
= {{f1, f4, f5}, f2, f3}. (9)

The fundamental identity can be proved by applying both sides of equation (7) with
fi = Hi, i = 1, . . . , 4, on a function f5, where fi ∈ C ∞(R3), i = 1, . . . , 5.

We can obtain Liouville’s equation, for an arbitrary observable, that does not depend
explicitly on time:

df

dt
= {f,H1,H2}. (10)

3



J. Phys. A: Math. Theor. 42 (2009) 275201 M Axenides et al

This equation implies the conservation of the ‘Hamiltonians’ H1 and H2 under the flow and,
thus, the particle’s trajectory lies on the intersection of the two surfaces in R

3, defined by H1

and H2, given the initial conditions, x(0). Its formal solution may be written as

f (x) = e−tX(H1,H2)f (x(0)). (11)

We shall need later the toroidal compactification of R
3, T

3 ≡ R
3/Z

3. The smooth functions,
f ∈ C ∞(T3) may be written as

f (x) = 1

(2π)3/2

∑
n∈Z3

fn · ein·x.

The Poisson bracket of two functions f, g on the 3-torus is defined as

{f, g} ≡ εijkai∂jf ∂kg, (12)

once a constant vector a ∈ R
3 is given and the corresponding Poisson manifold is denoted

with T
3
a. The Poisson algebra on the basis ein·x,n ∈ Z

3 is given by

{ein·x, eim·x} = −det(a,m,n) ei(m+n)·x. (13)

The corresponding algebra, SDiff(T3) can be expressed in terms of the Nambu bracket
[4, 11, 13]:

{ein1·x, ein2·x, ein3·x} = −i × det(n1,n2,n3) ei(n1+n2+n3)·x. (14)

The compactification on the torus or on the sphere can also be considered as an infrared
cutoff for growing modes of incompressible flows over large distances in fluid dynamics [16].

3. Linear Nambu flows

In this work, we focus on the case of linear Nambu flows, which can be derived from a pair
of Hamiltonians, H2 = a · x and H1 = (1/2)(x, Bx), where a,x ∈ R

3 and B is a real,
symmetric, 3 × 3 matrix. The corresponding trajectory of the linear Nambu flow (LNF) is
given by

dxi

dt
= εijkajBklxl ≡ xlMli . (15)

The solutions, given an initial condition, xi(0), lie on the intersection of the plane with normal
vector, a and the quadratic surface given by H1 = (1/2)(x(0), Bx(0)). We can integrate the
equation of motion explicitly and find

x(t) = x(0) etM. (16)

Since the matrix M is traceless, A ≡ eM is an element of the group SL(3, R). The converse
is not true, i.e. every traceless matrix M (element of the Lie algebra, sl(3, R)) defines an
incompressible flow, which, in general, does not admit a representation in terms of a linear
and a quadratic Hamiltonian pair. If we require, in addition, that M have an eigenvector with
zero eigenvalue, then it can be shown that it is of the ‘Nambu form’, equation (15).

It is possible to compactify the LNF on T
3, if we consider the linear evolution

equation (15), modulo the size of the torus, i.e. we take xi, i = 1, 2, 3, to belong to the
elementary cell, xi ≡ xi + Li , where Li is the length of the torus along the direction xi .
We choose our units so that Li = 2π . The action of the matrix A on every point of T

3 is
then taken modulo 2π . These flows are known in the literature as toral automorphisms [17].
The motion in this case, even though the equation is linear, can be chaotic, depending on the
matrix elements of A. We can check that, for LNF in R

3, we have, essentially, a reduction to a
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two-dimensional phase space problem on the plane orthogonal to the vector a. In the case of
T

3, if the vector has rational components, then we have a finite number of different images of
the plane; if, however, the components are irrationals, then we have a truly three-dimensional
evolution for the system.

Considering the algebra of all LNF, we characterize the corresponding generators by a
vector, a ∈ R

3, and a symmetric, 3 × 3 matrix B,

X(a, B) = −εijkajBklxl∂i . (17)

Their Lie algebra closes as follows:

[X(a1, B1),X(a2, B2)] = X(a3, B2) + X(a2, B3),

al
3 = εijkai

2a
j

1Bkl
1 ,

Blm
3 = 2εijka

j

1Bkl
1 Bim

2 .

(18)

Since this algebra contains a total of eight independent parameters, it can generate SL(3, R),
i.e. consecutive application of different LNF gives rise to an SL(3, R) flow, which is not
necessarily LNF.

4. The discrete phase space of linear Nambu flows

The simplest discretization of T
3
θ (where θ ∈ R

3) can be constructed by considering only points
with rational coordinates, xi = 2πki/N, k1, k2, k3 integers modulo N, whose denominator is
a fixed prime number, N. Discretization of flows is necessary in order to provide an ultraviolet
cutoff to nonlinear, classical, instabilities [18]. This set forms a three-dimensional, Abelian,
group, T

3
N under addition of coordinates modulo 2π . The linear maps, which define the

evolution in this discrete phase space, are elements of Sl(3, ZN), i.e. 3 × 3 integer matrices
with entries taken modulo N and determinant equal to one (modulo N). The discrete time
evolution, for any A ∈ SL(3, ZN), is given as

xn+1 = xn · A, (19)

whose solution is

xn = x0 · An, n = 0, 1, 2, . . . . (20)

Since the group SL(3, ZN) is finite, all orbits are periodic and there exist interesting special
motions, which form subgroups thereof, namely, shears, rotations and dilatations (cf also
below). The shears form the discrete Heisenberg–Weyl subgroup HWN , which is the set of
elements (acting on the right side of points of T

3
N ):

T(a, b, c) =
⎛
⎝1 0 0

a 1 0
c b 1

⎞
⎠ a, b, c ∈ ZN, (21)

T(a1, b1, c1)T(a2, b2, c2) = T(a1 + a2, b1 + b2, c1 + c2 + b1a2)

ai, bi, ci ∈ ZN i = 1, 2, (22)

an inverse element

T−1(a, b, c) = T(−a,−b,−c + ab) (23)

and center (equal to ZN ) generated by the element � = T (0, 0, 1). The commutation relations
of two elements are given by

T(a1, b1, c1)T(a2, b2, c2) = �b1a2−b2a1 T(a2b2c2)T(a1, b1, c1). (24)

5



J. Phys. A: Math. Theor. 42 (2009) 275201 M Axenides et al

If we denote the generators of the one-parameter subgroups by P and Q,

P = T(1, 0, 0), Q = T(0, 1, 0), (25)

we obtain the Heisenberg–Weyl commutation relation [19]

QP = �PQ, �P = P�, �Q = Q�, (26)

which together with the periodicity properties,

QN = P N = �N = I, (27)

define the discrete Heisenberg–Weyl group, HWN . The general element equation (21) can be
written as

T(a, b, c) = �cP aQb. (28)

The subgroups mentioned previously have the following matrix realizations, the dilatations:

D(a, b) =
⎛
⎝a 0 0

0 b 0
0 0 (ab)−1

⎞
⎠ . (29)

The rotations, which form the discrete subgroup, SO(3, ZN), preserves the norm, (x1)2 +
(x2)2 + (x3)2 mod N and are generated by the following matrices:

R1(a1, b1) =
⎛
⎝1 0 0

0 a1 b1

0 −b1 a1

⎞
⎠ , R2(a2, b2) =

⎛
⎝ a2 0 b2

0 1 0
−b2 0 a2

⎞
⎠ ,

R3(a3, b3) =
⎛
⎝ a3 b3 0

−b3 a3 0
0 0 1

⎞
⎠ ,

(30)

with a2
i + b2

i ≡ 1modN , for i = 1, 2, 3, through the group law R =
R1(a1, b1)R2(a2, b2)R3(a3, b3).

Another interesting subgroup of SL(3, ZN) is the discrete Lorentz group, SO(2, 1, ZN),
where, in R2 and R3 we replace −b2 and −b3 with b2 and b3, respectively. These elements
then preserve the norm (x1)2 − (x2)2 − (x3)2 mod N.

Since N is prime, ZN is a finite algebraic field, and there exists a primitive element, g,
whose successive powers generate all the elements of the field. If N = 4k ± 1, then the
subgroups generated by each Ri are cyclic, of order 4k and they contain the three duality
matrices (Fourier transforms) for each of the phase space planes (12, 23, 31)[20].

To characterize discrete LNFs we must determine the form of the elements of SL(3, ZN)

which leave invariant a given vector, a ∈ T
3
N , a (left) eigenvector of the evolution matrix, A,

with eigenvalue unity

a = a · A. (31)

Rotations and translations have, indeed, this property, since they do leave certain vectors
invariant, whereas certain dilatations do not.

For any such vector, a = (a1, a2, a3), ai ∈ ZN , condition (31) allows us to solve for the
elements A31, A32, A33, if A33 is different from zero. The little group of a is an SL(2, ZN)

subgroup. Indeed, the evolution equation, (19), becomes

[a × x]n+1 = [a × x]n

⎛
⎜⎜⎜⎜⎝

A22 − a2

a3
A23 −(

A21 − a1

a3
A23

) A21a2 − A22a1

a3

−(
A12 − a2

a3
A13

)
A11 − a1

a3
A13 −A11a2 − A12a1

a3

0 0 0

⎞
⎟⎟⎟⎟⎠ . (32)

6
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This equation implies that the component of any vector x, parallel to a, is preserved under this
evolution, while the components that lie on the plane perpendicular to a and are represented
by a × x, evolve under the 2 × 2 matrix:

Ã ≡

⎛
⎜⎝A11 − a1

a3
A13 A21 − a1

a3
A23

A12 − a2

a3
A13 A22 − a2

a3
A23

⎞
⎟⎠ (33)

(it is noteworthy that Ã is the inverse of the 2 × 2 block in equation (32)!). It is quite
straightforward to check that the determinant of Ã is equal to 1 if a = a · A; thus, for, any
such A ∈ SL(3, ZN), we have a mapping to an Ã ∈ SL(2, ZN), which is the little subgroup of
A which leaves invariant the vector a. This mapping is a group homomorphism, ÃB̃ = ÃB.

This mapping will be useful for the quantization of LNFs in SL(3, ZN).

5. The non-commutative 3-torus

Non-commutative tori play an important role in non-commutative geometry [21, 24], in
M-theory matrix models[25] and quantum Hall effect [26, 27]. In the present context, we
need the description of the non-commutative 3-torus, which is appropriate for the study of
quantization of linear Nambu flows.

Let us begin by recalling that it is possible to embed the Heisenberg–Weyl algebra for one
degree of freedom:

[x1, x2] = ih̄I, (34)

in the three-dimensional non-commutative 3-space R
3
θ ,

[xi, xj ] = ih̄εijkθk, i, j, k = 1, 2, 3, θ ∈ R
3, (35)

so that the two-dimensional quantum phase space is defined by the Casimir [13]:

C = θ · x. (36)

We can compactify this algebra by considering the algebra of the group elements :

Ta = eia·x, a ∈ R
3. (37)

They satisfy

TaTb = e− ih̄
2 det(a,b,θ)Ta+b. (38)

These imply

[Ta, Tb] = −2i sin

(
h̄

2
det(a, b, θ)

)
Ta+b. (39)

If the quantization and deformation parameters satisfy

h̄θ = 2π

N
(k1, k2, k3), ki ∈ ZN i = 1, 2, 3, (40)

then the Hilbert space of the objects becomes an infinite set of identical copies of the Hilbert
space, HN , of dimension N. In this space, let us define the discrete non-commutative 3-torus
algebra as the set generated by three N × N unitary matrices Qi, i = 1, 2, 3, satisfying (for
fixed ki mod N, i = 1, 2, 3)

Q3Q2 = ωk1Q2Q3, Q1Q3 = ωk2Q3Q1 Q2Q1 = ωk3Q1Q2, (41)

with ki ∈ ZN and ω ≡ exp(2π i/N).

7
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The magnetic translation operators can be defined as

Jm = ω
1
2 (k3m1m2+k1m2m3−k2m3m1)Q

m1
1 Q

m2
2 Q

m3
3 . (42)

The phase is crucial and has to be chosen so that we have

J †
m = J−m, m ∈ Z

3
N. (43)

We then also find that

JmJn = ω− 1
2 det(k,m,n)Jm+n, m,n ∈ Z

3
N . (44)

We can see that these commutation relations imply the existence of central element of the
algebra, CT = Q

k1
1 Q

k2
2 Q

k3
3 . If the representation is irreducible, then C must be proportional

to the unit element, up to a phase, CT = ωcN × I , with cN ∈ ZN . Consider now the elements
Jαk, with α ∈ ZN . It is easy to check that they are pure phases:

Jαk = ω
α2

2 k1k2k3+α(cN −k1k2k3) × I. (45)

Therefore, the N3 magnetic translations are divided into a subgroup of N phases and a set of
N2 unitary matrices Jm, where m is orthogonal to k. This structure resembles that of the
discrete Heisenberg–Weyl group, HWN . The magnetic translation operators thus depend on
the vector k, and we shall henceforth explicitly highlight this by writing them as Jm(k). The
commutation relations between Jm(k) and Jm(k′) can be computed once we shall establish
the relation between these magnetic translations and the Heisenberg–Weyl generators.

The classical action of the discrete map A ∈ SL(3, ZN) on the points m = (m1,m2,m3)

of the torus T 3
N was reduced in the previous section to the action of Ã ∈ SL(2, ZN) on the

points m̃ ≡ (a3m1 − a1m3, a3m2 − a2m3) of the plane orthogonal to a.
If we restrict m to this plane, we obtain

m̃ = (m1,m2)T (a) ≡ (m1,m2)

⎛
⎜⎜⎝

1 − a2
2

a3

a1a2

a3
a1a2

a3

1 − a2
1

a3

⎞
⎟⎟⎠ , (46)

where we have assumed that a2
1 + a2

2 + a2
3 ≡ 1 mod N . In this case T (a) is an element of

SL(2, ZN).
Upon quantization on this discrete two-dimensional phase space, we should employ the

discrete Heisenberg–Weyl group, generated by the clock and shift N ×N matrices Q,P [31]:

Qk,l = ωkδk,l, Pk,l = δk,l+1, k, l ∈ ZN, (47)

which satisfy

QP = ωPQ. (48)

The corresponding two-dimensional magnetic translations defined by

Jr,s = ω
rs
2 P rQs, r, s ∈ ZN, (49)

satisfy the relations

Jr,sJr′,s′ = ω
r′s−rs′

2 Jr+r′,s+s′,

[Jr,s]
† = J−r,−s ,

(50)

where r, s, r ′, s ′ ∈ ZN .
We now identify the points of the torus T

2
N on which the map Ã acts with the indices,

(r, s) of the two-dimensional magnetic translations, Jr,s through

r ≡ a3m1 − a1m3, s ≡ a3m2 − a2m3, (51)

8
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as

Jm(k) = J(m1,m2)T (a). (52)

This ansatz implies the relations

J1,0,0 = Q1 = Ja3,0 = P a3 ,

J0,1,0 = Q2 = J0,a3 = Qa3 , (53)

J0,0,1 = Q3 = J−a1,−a2 = ω
a1a2

2 P −a1Q−a2 ,

and from the commutation relations of the operators Q1,Q2,Q3, we find

k1 = a1a3, k2 = a2a3, k3 = a2
3 . (54)

This identification also fixes the phase, cN , of the Casimir in equation (45) as

cN = k1k2k3

2
= a1a2a

4
3

2
. (55)

Thus the N phases have been eliminated and only magnetic translations in the plane orthogonal
to the vector a survive. It is possible to represent the algebra of equation (41) by 3×3 matrices
of SL(3, ZN) substituting in equation (53) the N × N matrices P,Q,ω · I by the matrices
P = T(1, 0, 0),Q = T(0, 1, 0),� = T(0, 0, 1) of the 3 × 3 Heisenberg–Weyl group in
equation (28).

In order to generate the full magnetic translation group of the three-dimensional, discrete
torus, we must consider three, mutually orthogonal, planes and their corresponding Jm(a)’s.
For example, a = (1, 0, 0),a = (0, 1, 0) and a = (0, 0, 1). Starting from the 1–2 plane
and applying discrete rotations of SO(3, ZN), cf equation (30), we can generate the other
two. To construct the corresponding Jm’s for the 2–3 and 3–1 planes, we must construct the
corresponding unitary, N × N operators, U(R1,2,3). This remains to be done.

In the following section, we shall apply the above results for the quantization of the
classical Nambu mechanics in the case of linear flows, for a fixed plane.

6. Quantization of linear Nambu flows on a discretized 3-torus

There is a long-standing problem on how to quantize Nambu mechanics, and there are various
proposals, which, however, do not respect the fundamental properties of the classical Nambu
bracket, such as Leibniz and the fundamental identity [2, 3, 5–7, 11].

Quantization of the classical dynamics, xn+1 = xnA, for A ∈ SL(3, ZN), means
constructing a unitary operator, U(A) as a N × N unitary matrix, that satisfies

U †(A)JmU(A) = Jm·A (56)

in the basis of the complete set of three-dimensional magnetic translations of the non-
commutative 3-torus. This would realize the N-dimensional metaplectic representation of the
double cover of SL(3, ZN). For rigorous mathematical results pertaining to the metaplectic
representation of the double cover of SL(3, F), for F a local field, we refer to the literature
[28]; for F = R, cf [29].

The results of the previous sections allow us to do this, for the case of LNFs. Indeed, we
found that, for those flows, the classical evolution equation, xn+1 = xn · A may be written in
the form of

[a × xn+1] = [a × xn]

(
Ã−1 ã

0 0

)
,

9
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where Ã is given by equation (33) and the vector ãT ≡ ((A21a2 − A22a1)/a3,

−(A11a2 − A12a1)/a3) and thus the interesting dynamical variables are the combinations
[a×xn]1 ≡ a2x3 −a3x2 and [a×xn]2 ≡ a3x1 −a1x3; the other component may be expressed
as a linear combination of these. Since Ã ∈ SL(2, ZN) when A ∈ SL(3, ZN) and a = a·A, we
know how to construct the unitary operator, U(̃A), that realizes the metaplectic representation
for Ã. Furthermore, we may verify that Ã · B̃ = ÃB, for any two matrices A, B ∈ SL(3, ZN)

that have a as a common eigenvector, with eigenvalue unity, a = a · A,a = a · B. So we can
write the following commuting, diagram:

A −→ Ã
↓ ↓

U(A) −→ U(̃A).

(57)

To construct the corresponding (unitary) evolution operator, U(A), we thus use the metaplectic
representation of SL(2, ZN) for the ‘reduced’ 2 × 2 matrix, Ã of equation (33) which satisfies

U(̃A)†Jr,sU (̃A) = J(r,s)̃A, (58)

and is given, for any element

Ã ≡
(

a b

c d

)
∈ SL(2, ZN),

by the expression [30, 31]

U(̃A)k,l = σN(c)√
N

ω
ak2−2kl+dl2

2c , (59)

where

σN(c) ≡ 1√
N

N−1∑
r=0

ωc·r2

is the Gauss sum [20].
The prefactor, σN(c), ensures that this representation is not only projective, but faithful,

i.e., for any two matrices, Ã and B̃, elements of SL(2, ZN), we have that U(ÃB) = U(̃A)U (̃B).
Having thus shown that, for LNFs, the interesting dynamics takes place on a plane

perpendicular to the vector a that enters in the definition of H2 ≡ a ·x we can understand why
the construction of the unitary operator U(A) ≡ U(̃A) amounts to a quantization of discrete
position and momenta: from the classical vectors m and a we construct the corresponding
position and momentum variables r ≡ a3m1 − a1m3 and s ≡ a3m2 − a2m3, respectively.
These evolve using the operator Ã, while the N-dimensional,complex vector (wavefunction),
in the position representation, depends on r = 0, 1, 2, . . . , N − 1 and evolves according to
U(̃A). From this operator, we may calculate the average value(s) of physical observables,
as well as correlation functions of the flow, using standard quantum-mechanical techniques.
For physically interesting subgroups of SL(3, ZN), mentioned in section 4, we may find the
eigenstates and eigenvalues of U(̃A) explicitly. This will be reported elsewhere.

7. Conclusions

We have constructed the quantization of Nambu mechanics, for the case of linear flows on
the discrete three-dimensional torus considered as a phase space. Our method proposes
also a scheme for the quantization of the Nambu 3-bracket as the algebra of the foliation
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of the non-commutative 3-torus by a family of Heisenberg–Weyl groups of all of its
linear two-dimensional subspaces (non-commutative 2-tori). The key idea was to use
the metaplectic representation of SL(3, ZN), induced by that of SL(2, ZN). Considering
potential applications, our method can be extended to the full set of discrete linear flows,
not necessarily of the Nambu type (not having invariant two-dimensional subspaces). This
will lead to the quantization of strong arithmetic chaos [22] on the discrete 3-torus and
can be used as a toy model for the quantization of turbulent maps [23]. Considering the
coset, SL(3, ZN)/SO(3, ZN), we can construct the corresponding quantum coherent states
(discrete orthogonal wavelets) for the wavelet transform of three-dimensional objects (quantum
tomography in the spirit of [30, 32]. Another possible direction is the study of discrete non-
commutative solitons in three dimensions using non-dispersive t’Hooft states [33]. Concluding
we believe that the proposed framework of quantization for Nambu mechanics will lead to
new insights for the quantization of the volume-preserving diffeomorphism group in three
dimensions.
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